2D-3D Pose Consistency-based Conditional Random Fields for 3D Human Pose Estimation

نویسندگان

  • Ju Yong Chang
  • Kyoung Mu Lee
چکیده

This study considers the 3D human pose estimation problem in a single RGB image by proposing a conditional random field (CRF) model over 2D poses, in which the 3D pose is obtained as a byproduct of the inference process. The unary term of the proposed CRF model is defined based on a powerful heat-map regression network, which has been proposed for 2D human pose estimation. This study also presents a regression network for lifting the 2D pose to 3D pose and proposes the prior term based on the consistency between the estimated 3D pose and the 2D pose. To obtain the approximate solution of the proposed CRF model, the N-best strategy is adopted. The proposed inference algorithm can be viewed as sequential processes of bottom-up generation of 2D and 3D pose proposals from the input 2D image based on deep networks and top-down verification of such proposals by checking their consistencies. To evaluate the proposed method, we use two large-scale datasets: Human3.6M and HumanEva. Experimental results show that the proposed method achieves the state-of-the-art 3D human pose estimation performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Models for 3d Human Pose Estimation

OF THE DISSERTATION Conditional Models for 3D Human Pose Estimation by ATUL KANAUJIA Dissertation Director: Dimitris Metaxas Human 3d pose estimation from monocular sequence is a challenging problem, owing to highly articulated structure of human body, varied anthropometry, self occlusion, depth ambiguities and large variability in the appearance and background in which humans may appear. Conve...

متن کامل

Car Segmentation and Pose Estimation using 3D Object Models

Image segmentation and 3D pose estimation are two key cogs in any algorithm for scene understanding. However, state-of-the-art CRF-based models for image segmentation rely mostly on 2D object models to construct top-down high-order potentials. In this paper, we propose new topdown potentials for image segmentation and pose estimation based on the shape and volume of a 3D object model. We show t...

متن کامل

Exploiting temporal information for 3D pose estimation

In this work, we address the problem of 3D human pose estimation from a sequence of 2D human poses. Although the recent success of deep networks has led many state-of-the-art methods for 3D pose estimation to train deep networks end-to-end to predict from images directly, the top-performing approaches have shown the effectiveness of dividing the task of 3D pose estimation into two steps: using ...

متن کامل

تخمین چنددوربینی حالت سه بعدی انسان با برازش افکنش مدل اسکلت سه بعدی مفصل دار در تصاویر سایه نما

Automatic capture and analysis of human motion, based on images or video is important issue in computer vision due to the vast number of applications in animation, surveillance, biomechanics, Human Computer Interaction, entertainment and game industry. In these applications, it is clear that 3D human pose estimation is an essential part. Therefore, its accuracy has a great effect on the perform...

متن کامل

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

The task of three-dimensional (3D) human pose estimation from a single image can be divided into two parts: (1) Two-dimensional (2D) human joint detection from the image and (2) estimating a 3D pose from the 2D joints. Herein, we focus on the second part, i.e., a 3D pose estimation from 2D joint locations. The problem with existing methods is that they require either (1) a 3D pose dataset or (2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.03986  شماره 

صفحات  -

تاریخ انتشار 2017